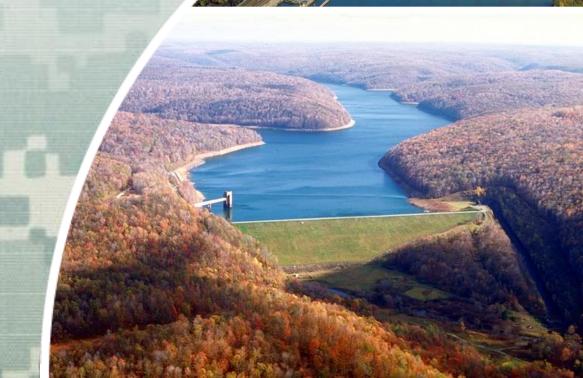
North Central Tennessee
Regional Water Supply Planning


**Pilot Study** 

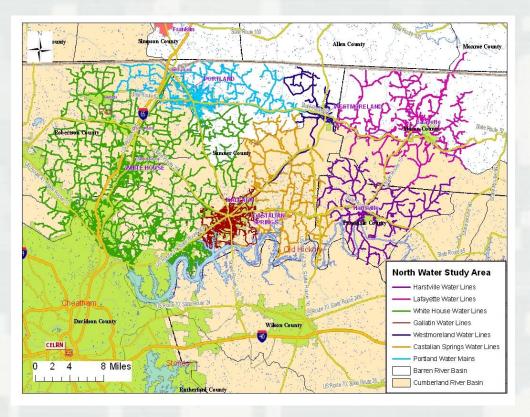
04 December 2009

Benjamin L. Rohrbach, P.E. Chief, Hydrology and Hydraulics U.S. Army Corps of Engineers Nashville District



US Army Corps of Engineers
BUILDING STRONG®




#### **Presentation Outline**

- Phase I Overview
- Phase II Tasks
- Phase II Progress
- Questions and Comments



#### Phase I Overview

- Collection and documentation of existing water source information, use, and demand for study area
- Collection and documentation of existing water distribution system and wastewater discharge information
- Development of GIS Database





#### Phase II Tasks

- Regional Drought Evaluation
- Existing Water Source Yield Analyses
- Water Demand Management Strategies
- Alternative Water Source Identification
- Alternative Water Source Yield Analyses



- Regional Drought Evaluation
  - Utilizes Standardized
     Precipitation Index –
     reflecting probability of occurrence for rainfall totals of selected duration
  - ▶ Practical limits of -4 to 4, beyond which the probability of occurrence is too low to detect within standard periods of record

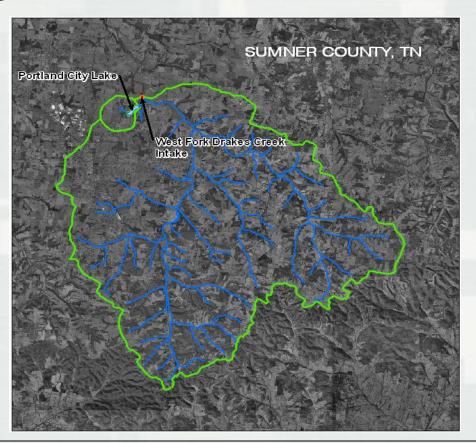
| SPI Values    |                |  |  |  |  |  |
|---------------|----------------|--|--|--|--|--|
| 2.0+          | extremely wet  |  |  |  |  |  |
| 1.5 to 1.99   | very wet       |  |  |  |  |  |
| 1.0 to 1.49   | moderately wet |  |  |  |  |  |
| 99 to .99     | near normal    |  |  |  |  |  |
| -1.0 to -1.49 | moderately dry |  |  |  |  |  |
| -1.5 to -1.99 | severely dry   |  |  |  |  |  |
| -2 and less   | extremely dry  |  |  |  |  |  |



- Regional Drought Evaluation
  - ► Study Area Precipitation Record: 1928 2009
  - ► Critical drought duration varies according to reservoir size and shape, demand, and watershed characteristics
  - ► SPI computed at multiple durations: 1 month to 60 months



| Drought   | 3            | 6            | 9     | 12           | 15    | 18    | 24    | 30    | 36    | 42    | 48    | 54    | 60    |
|-----------|--------------|--------------|-------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1930-1934 | -3.15        | -3.14        | -3.07 | <u>-3.62</u> | -3.17 | -3.06 | -2.22 | -1.48 | -1.61 |       |       |       |       |
| 1941-1946 | -2.69        | <u>-3.09</u> | -2.71 | -2.19        | -2.28 | -2.23 | -2.61 | -2.28 | -2.41 | -2.56 | -2.46 | -2.53 | -2.38 |
| 1953-1958 | <u>-3.64</u> | -3.39        | -2.44 | -2.4         | -2.33 | -2.4  | -2.5  | -2.39 | -2.60 | -2.47 | -2.7  | -2.44 | -2.49 |
| 1963-1966 | -2.4         | <u>-2.53</u> | -1.99 | -1.78        | -2.10 | -1.84 | -1.76 | -1.72 | -1.52 | -1.53 | -1.65 | -1.54 | -1.51 |
| 1986-1988 | <u>-2.77</u> | -2.36        | -2.15 | -1.95        | -2.21 | -1.95 | -1.59 | -1.45 | -1.50 | -1.99 | -1.55 | -1.17 | -0.87 |
| 2007-2008 | -1.89        | <u>-2.49</u> | -2.21 | -1.75        | -1.52 | -1.54 | -1.79 | -1.66 | -0.99 |       |       |       |       |


Critical 3 to 60 months duration SPI values for droughts in the North Central Study Area

- Early 1930's, early 1940's, mid 1950's droughts are dominant droughts at all durations
- 1930's and 1950's droughts are likely critical for study area - intensity at short duration

- Existing Water Source Yield Analyses
  - ▶ Primary Source of Water for Region is Old Hickory Lake
    - Exception is Portland Which Principally Relies
       Upon West Fork Drakes Creek and City Lake
  - ► Old Hickory Lake is Capable of Meeting Current Demand
  - ► Focus on Portland Existing Source Yields

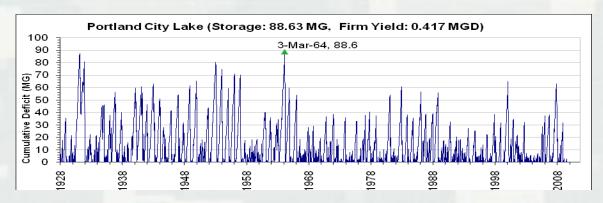


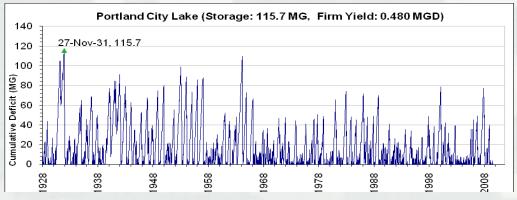
Existing Water Source Yield Analysis





- Existing Water Source Yield Analyses
  - ▶ Developed hydrologic models (HEC-HMS) of watersheds with historical precipitation record input
  - ► Generated synthetic inflow sequences to reservoir/stream
  - ► Utilized sequent peak algorithm to analyze inflow sequence and identify critical drought
  - ► Computed firm yield using reservoir storage capacity and sequent peak algorithm

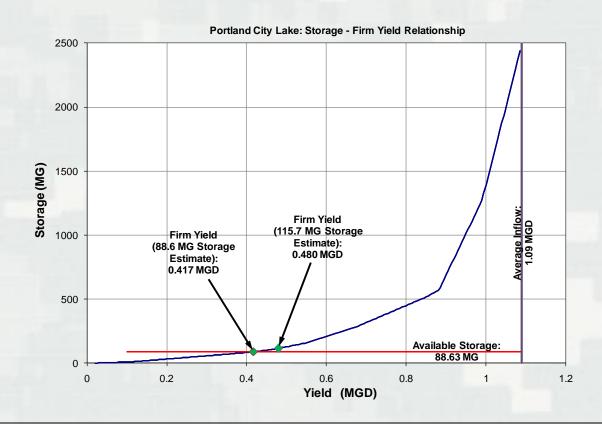

- Existing Water Source Yield Analyses
  - ➤ Sequent Peak Algorithm cumulative tracking of the daily water balance for a reservoir


```
K_t = (D_t - Q_t) + K_{t-1}

Where:
K_t = \text{cumulative deficit at time (t)}
D_t = \text{demand (yield) at time (t)}
Q_t = \text{inflow at time (t)}
K_{t-1} = \text{cumulative deficit at time (t-1)}
```

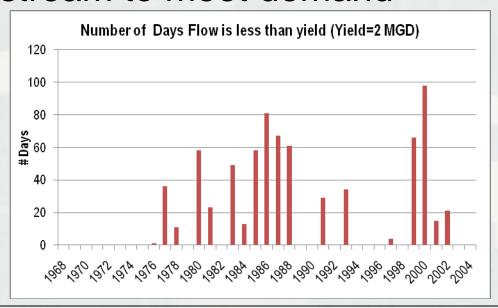
► Firm yield is calculated by solving for the yield at which cumulative deficit is exactly equal to the reservoir's available storage capacity

#### Existing Water Source Yield Analyses





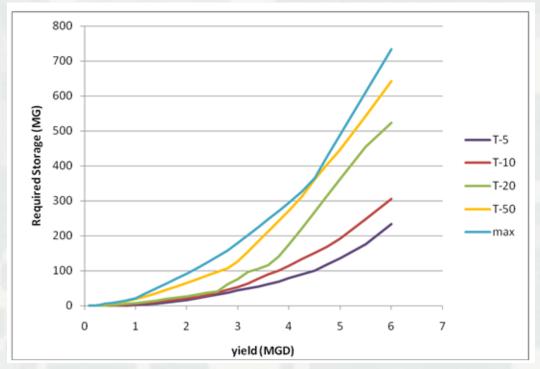

Sequent Peak Algorithm (SPA) Plots at a Daily Time-step


Firm Yield
Computations are
Dependent Upon
Accurate Estimates of
Available Storage in the
Reservoir

Existing Water Source Yield Analyses






- Existing Water Source Yield Analyses
  - ► West Fork Drakes Creek Examine for a range of withdrawal rates (yield) the ability of the stream to meet demand





#### Existing Water Source Yield Analyses

- ▶ Plot represents the amount of storage required to withdraw the yield without fail at a given return period
- Current Portland average demand is 2 MGD
- ▶ 100 MG storage required in addition to river flows to yield 2 MGD reliably





- Additional Data Needs for Firm Yield Analyses:
  - **▶** Portland
    - In-stream storage at West Fork Drakes Creek intake
    - Stage-storage curve for City Lake
    - Lowest intake elevation for City Lake



- Water Demand Management Strategies
  - ► Existing Practices and Plans Reviewed
  - ► Evaluation of Active and Passive Measures Planned
    - Reduce Unaccounted for Water Loss
    - Conservation Pricing
    - New Construction Standards
    - Retrofit, Replacement, Rebate Programs
    - Education



- Alternative Water Source Identification
  - ► Existing Source Improvement
    - Optimize Water Sharing between Utilities
  - ► New Source Development
    - Portland Lake Project
    - Additional Withdrawals from Old Hickory
  - ► Yield Analyses not yet Undertaken







#### Questions/Comments??

Benjamin L. Rohrbach, P.E.

Chief, Hydrology & Hydraulics Branch

Phone: (615) 736-7497

Email: ben.rohrbach@usace.army.mil

